====== numtheory.py ======
* [[numtheory_old|이전 버전 코드]]
===== linear_congruences =====
==== 코드 ====
# N linear_congruences
# I {"version": "2.2", "import": ["math"], "abc": ["Iterable"]}
def linear_congruences(a_vals: Iterable[int],
m_vals: Iterable[int],
*,
coprime_moduli: bool = False) -> tuple[int, int]:
"""Returns a solution of the given system of linear congruences.
This function finds the smallest non-negative integer x0 and m, where any
x_k = x0 + k*m satisfies following simultaneous linear congruence equations:
x % m_0 = a_0
x % m_1 = a_1
...
x % m_n = a_n
The argument 'coprime_moduli' should be set True if all m_i's are pairwise
coprime. It runs faster by using Chinese Remainder Theorem.
"""
if coprime_moduli:
m_list = list(m_vals)
m = 1
for m_i in m_list:
m *= m_i
a = sum((p := m // m_i) * pow(p, -1, m_i) * a_i
for a_i, m_i in zip(a_vals, m_list)) % m
else:
a, m = 0, 1
for b, n in zip(a_vals, m_vals):
g = math.gcd(m, n)
l, mod = divmod(a - b, g)
if mod:
raise ValueError('No solution')
um = pow(m // g, -1, n // g) * m
m *= n // g
a = (a - l * um) % m
return a, m
==== 설명 ====
* [[ps:연립 선형 합동식]] 참고
* 함수 이름에 고민을 많이 했다. 연립 합동식을 정확히 쓰면 "System of linear congruences"나 "Simultaneous linear congruences"가 되는데 둘다 너무 길어서, 차라리 알고리즘 이름대로 "chinese_remainder"를 쓸까 하다가, 결국 지금의 이름으로 결정.
* 처음 버전에서는 모듈러가 모두 서로소인 경우에 대해서만 해결하도록 작성했다가, 모듈러가 서로소가 아닌 경우까지 확장했다. 그렇게 바뀌면서 리턴값도 가능한 해중의 최솟값만 리턴해주던 것에서 모듈러들의 lcm까지도 함께 리턴해주도록 바뀌었다.
==== 이 코드를 사용하는 문제 ====
---- struct table ----
schema: ps
cols: site, prob_id, %title%, prob_level
filter: teflib ~ *linear_congruences*
csv: 0
----
===== prime_list =====
==== 코드 ====
# N prime_list
# I {"version": "1.3", "import": ["math"]}
def prime_list(a: int, b: int = -1) -> list[int]:
"""Returns a list of prime numbers in the given range, [1, a] or [a, b]."""
beg, end = (1, a + 1) if b < 0 else (min(a, b), max(a, b) + 1)
if end < 5:
return [i for i in range(beg, end) if i in (2, 3)]
n = end + 6 - end % 6
sieve = [False] + [True] * (n // 3 - 1)
for i in range(math.isqrt(n) // 3 + 1):
if sieve[i]:
d, s, j = (k := 1 | 3 * i + 1) * 2, k * k, k * (k + 4 - 2 * (i & 1))
sieve[s // 3::d] = [False] * ((n // 6 - s // 6 - 1) // k + 1)
sieve[j // 3::d] = [False] * ((n // 6 - j // 6 - 1) // k + 1)
b, e = (beg | 1) // 3, n // 3 - 2 + (end % 6 > 1)
return ([p for p in (2, 3) if p >= beg] +
[1 | 3 * i + 1 for i in range(b, e) if sieve[i]])
==== 설명 ====
* [[ps:소수 목록 구하기]] 참고
* v1.2x 까지는 2-wheel을 사용했으나, v1.3에서부터 2,3-wheel을 사용
* 인자를 한개만 주면, [2, a]까지의 소수목록을, 인자 두개를 주면 [a, b]까지의 소수목록을 준다.
* False의 리스트를 만들어서 slice assignment를 사용하는 것이, 원소 하나씩 대입하는 것보다 빠르다.
==== 이 코드를 사용하는 문제 ====
---- struct table ----
schema: ps
cols: site, prob_id, %title%, prob_level
filter: teflib ~ *prime_list*
csv: 0
----